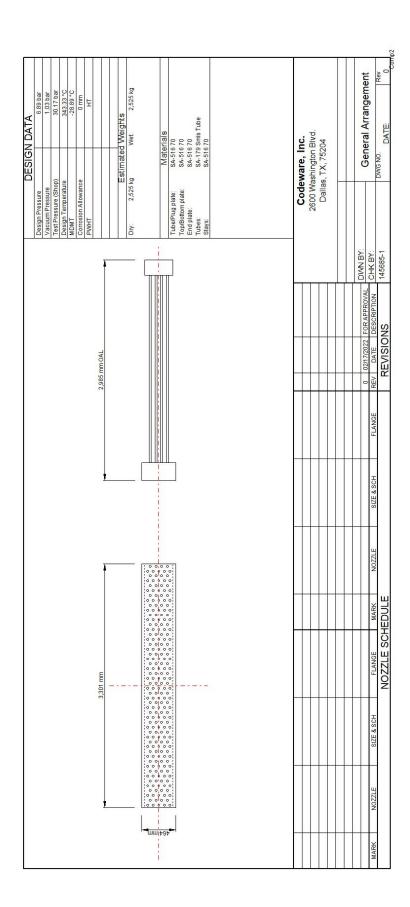

Your Company Name

Your Company Address

Item:

Vessel No:

Customer:


Contract:

Designer:

Date: Tuesday, May 30, 2023

Table of Contents

General Arrangement Drawing	1
Deficiencies Summary	3
Pressure Summary	4
Settings Summary	6
Thickness Summary	8
Weight Summary	9
Hydrostatic Test	10
Bill of Materials	11
Inlet/Outlet Header	12
Tubes	21
End Plates for Inlet/Outlet Header	23
Return Header	25
End Plates for Return Header	34

Deficiencies Summary

No deficiencies found.

Pressure Summary

Component Summary										
Identifier		P Design (bar)	T Design (°C)	MAWP (bar)	MAP (bar)	MAEP (bar)	T _e external (°C)	MDMT (°C)	MDMT Exemption	Impact Tested
	Tubesheet	6.89	343.33	34.26	36.65	N/A	343.33	-48	Note 1	No
	Plugsheet	6.89	343.33	33.82	36.18	N/A	343.33	-48	Note 2	No
Inlet/Outlet Header	Top / Bottom Plate	6.89	343.33	24.38	26.08	N/A	343.33	-40.25	Note 3	No
	End Plates	6.89	343.33	22.26	23.81	22.26	343.33	-44.01	Note 4	No
	Stay Plates	6.89	343.33	74.19	79.37	N/A	343.33	-105	Note 5	No
<u>Tubes</u>		6.89	343.33	212.4	221.51	114.25	343.33	-105	Note 6	No
	Tubesheet	6.89	343.33	50.33	53.84	N/A	343.33	-48	Note 7	No
	Plugsheet	6.89	343.33	49.68	53.15	N/A	343.33	-48	Note 8	No
Return Header	Top / Bottom Plate	6.89	343.33	37.18	39.77	N/A	343.33	-48	Note 9	No
	End Plates	6.89	343.33	33.76	36.11	33.76	343.33	-48	Note 10	No
	Stay Plates	6.89	343.33	90.8	97.13	N/A	343.33	-105	Note 11	No

Chamber Summary						
Design MDMT	-28.89 °C					
Rated MDMT	-28.89 °C @ 22.26 bar					
MAWP hot & corroded	22.26 bar @ 343.33 °C					
MAP cold & new	23.81 bar @ 21.11 °C					
MAEP	22.26 bar @ 343.33 °C					
(1) The rated MDMT is limited to the design MDMT based	on the setting in the Calculations tab of the Set Mode dialog					

⁽¹⁾ The rated MDMT is limited to the design MDMT based on the setting in the Calculations tab of the Set Mode dialog.

	Notes for MDMT Rating	
Note #	Exemption	Details
1.	impact test exemption temperature from Fig UCS-66M Curve B = -15.05°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 22°C, (coincident ratio = 0.6072) Rated MDMT of -54.05°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 15.88 mm
2.	impact test exemption temperature from Fig UCS-66M Curve B = -15.05°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 21.6°C, (coincident ratio = 0.6151) Rated MDMT of -53.65°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 15.88 mm
3.	impact test exemption temperature from Fig UCS-66M Curve B = -15.05°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 8.2°C, (coincident ratio = 0.8534)	UCS-66 governing thickness = 15.88 mm
4.	impact test exemption temperature from Fig UCS-66M Curve B = -23.31°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 3.7°C, (coincident ratio = 0.9348)	UCS-66 governing thickness = 12 mm
5.	is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.2804)	
6.	Material is impact test exempt per UCS-66(d) (NPS 4 or smaller pipe)	
7.	impact test exemption temperature from Fig UCS-66M Curve B = -15.05°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 47.4°C, (coincident ratio = 0.4134) Rated MDMT of -79.45°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 15.88 mm
8.	impact test exemption temperature from Fig UCS-66M Curve B = -15.05°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 45.9°C, (coincident ratio = 0.4187) Rated MDMT of -77.95°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 15.88 mm
9.	impact test exemption temperature from Fig UCS-66M Curve B = -15.05°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 26.2°C, (coincident ratio = 0.5596) Rated MDMT of -58.25°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 15.88 mm
10.	impact test exemption temperature from Fig UCS-66M Curve B = -23.31°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 21.5°C, (coincident ratio = 0.6163) Rated MDMT of -61.81°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 12 mm
11.	is impact test exempt to -105°C per UCS-66(b)(3) (coincident ratio = 0.2291)	

Settings Summary

COMPRESS 2023 Build 8310								
ASME Section VIII Division 1, 2021 Edition Metric								
Units	MKS							
Datum Line Location	0.00 mm from right seam							
Vessel Design Mode	Design Mode							
Minimum thickness	1.5 mm per UG-16(b)							
Design for cold shut down only	No							
Design for lethal service (full radiography required)	No							
Design nozzles for	Design P only							
Corrosion weight loss	100% of theoretical loss							
UG-23 Stress Increase	1.20							
	· ·							
Skirt/legs stress increase	1.0 0.03 mm							
Minimum nozzle projection								
Juncture calculations for $\alpha > 30$ only	Yes							
Preheat P-No 1 Materials > 1.25" and <= 1.50" thick	No							
UG-37(a) shell tr calculation considers longitudinal stress	No							
Cylindrical shells made from pipe are entered as minimum thickness	No							
Nozzles made from pipe are entered as minimum thickness	No							
ASME B16.9 fittings are entered as minimum thickness	No							
Butt welds	Tapered per Figure UCS-66.3(a)							
Disallow Appendix 1-5, 1-8 calculations under 15 psi	No							
Hydro/Pneumatic Test								
Shop Hydrotest Pressure	1.3 times vessel MAWP [UG-99(b)]							
Test liquid specific gravity	1.00							
Maximum stress during test	90% of yield							
Required Marking - UG-116								
UG-116(f) Postweld heat treatment	нт							
Code Cases\Interpretations								
Use Appendix 46	No							
Use UG-44(b)	No							
Use Code Case 3035	No							
Apply interpretation VIII-1-83-66	Yes							
Apply interpretation VIII-1-86-175	Yes							
Apply interpretation VIII-1-01-37								
11.2	Yes							
Apply interpretation VIII-1-01-150	Yes Yes							
11.2								
Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85	Yes							
Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50	Yes Yes							
Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85	Yes Yes Yes							
Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction	Yes Yes Yes No							
Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction	Yes Yes Yes No No							
Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction Disallow UG-20(f) exemptions	Yes Yes Yes No No							
Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction Disallow UG-20(f) exemptions Appendix 13	Yes Yes Yes No No No							
Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction Disallow UG-20(f) exemptions Apply API 661 Requirements	Yes Yes Yes No No No							
Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction Disallow UG-20(f) exemptions Appendix 13 Apply API 661 Requirements UG-22 Loadings	Yes Yes Yes No No No Yes							
Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction Disallow UG-20(f) exemptions Appendix 13 Apply API 661 Requirements UG-22 Loadings UG-22(a) Internal or External Design Pressure	Yes Yes Yes No No No Yes Yes							
Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction Disallow UG-20(f) exemptions Appendix 13 Apply API 661 Requirements UG-22(a) Internal or External Design Pressure UG-22(b) Weight of the vessel and normal contents under operating or test conditions	Yes Yes Yes No No No Yes Yes Yes No							
Apply interpretation VIII-1-01-150 Apply interpretation VIII-1-07-50 Apply interpretation VIII-1-16-85 No UCS-66.1 MDMT reduction No UCS-68(c) MDMT reduction Disallow UG-20(f) exemptions Appendix 13 Apply API 661 Requirements UG-22 Loadings UG-22(a) Internal or External Design Pressure UG-22(b) Weight of the vessel and normal contents under operating or test conditions UG-22(c) Superimposed static reactions from weight of attached equipment (external loads)	Yes Yes Yes No No No Yes Yes Yes No No No No							

UG-22(j) Test pressure and coincident static head acting during the test:	Yes
Note: UG-22(b),(c) and (f) loads only considered when supports are	e present.
Note 2: UG-22(d)(1),(e),(f)-snow,(g),(h),(i) are not considered. If these loads are present, additi	onal calculations must be performed.

License Information							
Company Name	Codeware, Inc.						
License	Commercial						
License Key ID	81004						
Support Expires	June 03, 2023						

Thickness Summary

	Header Data										
Component Identifier	Plate	Material	Length (mm)	Width (mm)	Nominal t (mm)	Design t (mm)	Total Corrosion (mm)	Mid-Joint E	Corner-Joint E		
	Top / Bottom Plate	SA-516 70	190.5	3,300.6	15.88	8.23	0	1	1		
	Tubesheet	SA-516 70	463.55	3,300.6	25.4	10.91	0	1	1		
Inlet/Outlet Header	Plugsheet	SA-516 70	463.55	3,300.6	25.4	10.98	0	1	1		
	End Plates	SA-516 70	190.5	431.8	12	6.68	0		1		
	Stay Plates	SA-516 70	3,276.6	190.5	12	1.12	0		1		
	Top / Bottom Plate	SA-516 70	152.4	3,300.6	15.88	6.58	0	1	1		
	Tubesheet	SA-516 70	374.65	3,300.6	25.4	8.84	0	1	1		
Return Header	Plugsheet	SA-516 70	374.65	3,300.6	25.4	8.9	0	1	1		
	End Plates	SA-516 70	152.4	342.9	12	5.42	0		1		
	Stay Plates	SA-516 70	3,276.6	152.4	12	0.91	0		1		

Component Data									
Component Identifier	Material	Diameter (mm)	Length (mm)	Nominal t (mm)	Design t (mm)	Total Corrosion (mm)	Joint E	Load	
Tubes	SA-179 Smls Tube	25.4 OD	2,590.8	3.18	0.22	0	1.00	External	

	Definitions							
Nominal t	Vessel wall nominal thickness							
Design t	Required vessel thickness due to governing loading + corrosion							
Joint E	Longitudinal seam joint efficiency							
	Load							
Internal	Circumferential stress due to internal pressure governs							
External	External pressure governs							
Wind	Combined longitudinal stress of pressure + weight + wind governs							
Seismic	Combined longitudinal stress of pressure + weight + seismic governs							

Weight Summary

Weight (kg) Contributed by Vessel Elements										
Commonant	Metal	Metal	Insulation	Insulation Supports Lining	Linina	Piping	Opera	ting Liquid	Test Liquid	
Component	New*	Corroded	ilisulation		+ Liquid	New	Corroded	New	Corroded	
Inlet/Outlet Header	839.3	839.3	0	0	0	0	0	0	261.8	261.8
Tubes	1,012.2	1,012.2	0	0	0	0	0	0	166	166
Return Header	673.9	673.9	0	0	0	0	0	0	165.1	165.1
TOTAL:	2,525.5	2,525.5	0	0	0	0	0	0	426.9	426.9
*Shells with attache	*Shells with attached nozzles have weight reduced by material cut out for opening.									

Weight (kg) Contributed by Attachments											
Component	Body Flanges			zzles & langes	Packed Beds	Trays	Tray Supports	Rings &	Vertical Loads		
·	New	Corroded	New	Corroded	Beas		Supports	Clips	Loaus		
Inlet/Outlet Header	0	0	0	0	0	0	0	0	0		
Return Header	0	0	0	0	0	0	0	0	0		
TOTAL:	0	0	0	0	0	0	0	0	0		

Vessel Totals							
	New	Corroded					
Operating Weight (kg)	2,525	2,525					
Empty Weight (kg)	2,525	2,525					
Test Weight (kg)	2,952	2,952					
Capacity** (liters)	427	427					
**The vessel capacity does not include volume of nozzle, piping or other attachments.							

Hydrostatic Test

Horizontal shop hydrostatic test based on MAWP per UG-99(b)

Gauge pressure at 21.11°C = $1.3 \cdot MAWP \cdot LSR$

 $=1.3\cdot 22.26\cdot 1.0429$

=30.17 bar

	Horizontal shop hydrostatic test								
Identifier	pressure static head stress		UG-99(b) stress ratio	UG-99(b) Stress during test (kg _f /cm ²)		Allowable test stress (kg _f /cm ²)	Stress excessive?		
Tubes (1)	30.17	0	1.0429	1.30	120.219	1,651.94	No		
End Plates	30.17	0	1.0698	1.30	1,783.426	3,606.736	No		
End Plates	30.17	0	1.0698	1.30	1,175.749	3,606.736	No		

(1) Tubes limits the UG-99(b) stress ratio.
(2) 1.5*0.9*S_y used as the basis for the maximum local primary membrane stress at the nozzle intersection P_L.
(3) The zero degree angular position is assumed to be up, and the test liquid height is assumed to the top-most flange.
(4) UG-99(I): Custom flange assemblies shall be tested with gaskets having identical geometries and gasket factors, and bolting having identical allowable stress at room temperature as used in the design calculations.

The test temperature of 21.11 °C is warmer than the minimum recommended temperature of -27.01 °C so the brittle fracture provision of UG-99(h) has been met.

Bill of Materials

	Appendix 13 Headers									
Item #	Description	Material	Thk [mm]	Length [mm]	Width [mm]	Weight [kg]	Qty			
Plate1	End Plates	SA-516 70	12	152.4	342.9	4.9	2			
Plate2	End Plates	SA-516 70	12	190.5	431.8	7.7	2			
Plate3	Stay Plates	SA-516 70	12	3,276.6	152.4	46.9	1			
Plate4	Stay Plates	SA-516 70	12	3,276.6	190.5	58.7	1			
Plate5	Top / Bottom Plate	SA-516 70	15.88	3,300.6	152.4	62.5	2			
Plate6	Top / Bottom Plate	SA-516 70	15.88	3,300.6	190.5	78.2	2			
Plate7	Tubesheet / Plugsheet	SA-516 70	25.4	3,300.6	374.65	246	2			
Plate8	Tubesheet / Plugsheet	SA-516 70	25.4	3,300.6	463.55	304.4	2			

	Tubes						
Item #	Туре	Material	Thk [mm]	Dia [mm]	Length [mm]	Weight [kg] (ea)	Qty
Tube1	Tube	SA-179 Smls Tube	3.18	25.4	2,590.8	4.5	225

Inlet/Outlet Header

ASME Section VIII Division 1, 2021 Edition Metric							
Co	omponent	Appendix 13 Plug Header					
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)			
I	nternal	6.89	6.89 343.33				
E	xternal	1.03	343.33	-28.89			
	Dim	ensions					
Tubesheet	Inside Length, h		431.8 mm				
Tubesneet	Thickness, t ₂		25.4 mm				
T (D . 11	Inside Length, H		190.5 mm				
Top/Bottom	Thickness, t ₁		15.88 mm				
End Plat	te Thickness, t ₅		12 mm				
Le	ength, L _v		3,276.6 mm				
Corrosion	Inner		0 mm				
Corrosion	Outer	0 mm					
		ubes					
Numb	er of Passes	2					
	Pitch	76.2 mm					
Lay	out Angle	Rotated Triangular (60°)					
	Quantity	225					
	OD	25.4 mm					
Wall	Thickness	3.18 mm					
Min W	all Thickness	2.78 mm					
Distance E	Between Headers	2,540 mm					
Corrosion	Inner		0 mm				
Corresion	Outer	0 mm					
		y Plate					
Num	ber of Stays		1				
		12 mm					
	ckness, t ₃		12 mm				
Thi	ckness, t ₃		12 mm 203.2 mm				

Joint Efficiency	
Tubesheet/Plugsheet mid-plate	1
Top/Bottom mid-plate	1
Corner	1
End	1
Stay	1

Ligament Efficiency				
Diameter,				
Tubesheet	25.65 mm			
Plugsheet	26.3 mm			

Material Summary								
Plate	Material	Impact Tested	Normalized	Fine Grain Practice	PWHT			
Tubesheet/Plugsheet	SA-516 70	×	X	X	V			
Top/Bottom	SA-516 70	×	×	×	/			
End	SA-516 70	×	X	X	~			
Stay	SA-516 70	×	×	×	/			
Tubes	SA-179 Smls Tube	×	×	×	X			

Results Summary									
	t (mm)	t _d (mm)	MAWP (bar)	MAP (bar)	MDMT (°C)				
Tubesheet	25.4	10.91	34.26	36.65	-48				
Plugsheet	25.4	10.98	33.82	36.18	-48				
Top/Bottom	15.88	8.23	24.38	26.08	-40.25				
Stay	12	1.12	74.19	79.37	-105				

Stress Summary												
		S _m (kg _f / cm ²)	S _{m,allow} (kg _f / cm ²)	(k	N,M g _f / n ²)	(k	ь)Q g _f / n ²)	(k) _{N,M} g _f / n ²)	(k	T)Q g _f / n ²)	S _{T,allow} (kg _f / cm ²)
			Cili)	Inner	Outer	Inner	Outer	Inner	Outer	Inner	Outer	Cili)
Tubesheet	Oper Hot & Corr	<u>40</u>	1,315	<u>357</u>	<u>-357</u>	<u>201</u>	<u>-201</u>	<u>397</u>	<u>-318</u>	<u>241</u>	<u>-161</u>	1,973
Tubesneet	Shop Test New	<u>174</u>	2,404	<u>1,564</u>	<u>-1,564</u>	<u>879</u>	<u>-879</u>	<u>1,738</u>	<u>-1,390</u>	<u>1,053</u>	<u>-705</u>	3,607
Plugsheet	Oper Hot & Corr	<u>40</u>	1,315	<u>362</u>	<u>-362</u>	<u>201</u>	<u>-201</u>	<u>402</u>	<u>-322</u>	<u>241</u>	<u>-161</u>	1,973
Flugslieet	Shop Test New	<u>176</u>	2,404	<u>1,584</u>	<u>-1,584</u>	<u>879</u>	<u>-879</u>	<u>1,760</u>	<u>-1,408</u>	<u>1,055</u>	<u>-703</u>	3,607
Top/Bottom	Oper Hot & Corr	<u>44</u>	1,315	<u>-245</u>	<u>245</u>	<u>514</u>	<u>-514</u>	<u>-201</u>	<u>289</u>	<u>558</u>	<u>-470</u>	1,973
Торивошот	Shop Test New	<u>192</u>	2,404	<u>-1,072</u>	<u>1,072</u>	<u>2,250</u>	<u>-2,250</u>	<u>-881</u>	<u>1,264</u>	2,442	<u>-2,059</u>	3,607
Stay	Oper Hot & Corr	<u>122</u>	1,315	-	-	-	-		<u>12</u>	<u>22</u>		1,315
Stay	Shop Test New	<u>535</u>	2,404	-	-	-	-		<u>50</u>	<u>35</u>		2,404

UCS-66 Material Toughness Requirements Tubesheet				
Governing thickness, t _g =	15.88 mm			
Exemption temperature from Fig UCS-66M Curve B =	-15.05°C			
Stress ratio per UCS-66(b)(1)(b) = $\frac{22.26}{36.65}$ =	0.6072			
Reduction in MDMT, T _R from Fig UCS-66.1M =	22°C			
Reduction in MDMT, T _{PMHT} from UCS-68(c) =	17°C			
$MDMT = \max [MDMT - T_R - T_{PWHT}, -48] = \max [-15.05 - 22 - 17, -48] = 0$	-48°C			
Material is exempt from impact testing at the Design MDMT of -28.89°C.				

UCS-66 Material Toughness Requirements Plugsheet				
Governing thickness, t _g =	15.88 mm			
Exemption temperature from Fig UCS-66M Curve B =	-15.05°C			
Stress ratio per UCS-66(b)(1)(b) = $\frac{22.26}{36.18}$ =	0.6151			
Reduction in MDMT, T _R from Fig UCS-66.1M =	21.6°C			
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C			
$MDMT = \max [MDMT - T_R - T_{PWHT}, -48] = \max [-15.05 - 21.6 - 17, -48] = 0$	-48°C			
Material is exempt from impact testing at the Design MDMT of -28.89°C.				

UCS-66 Material Toughness Requirements Top/Bottom			
Governing thickness, t _g =	15.88 mm		
Exemption temperature from Fig UCS-66M Curve B =	-15.05°C		
Stress ratio per UCS-66(b)(1)(b) = $\frac{22.26}{26.08}$ =	0.8534		
Reduction in MDMT, T _R from Fig UCS-66.1M =	8.2°C		
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C		
$MDMT = \max [MDMT - T_R - T_{PWHT}, -48] = \max [-15.05 - 8.2 - 17, -48] = -15.05 - 8.2 - 17, -48$	-40.25°C		
Material is exempt from impact testing at the Design MDMT of -28.89°C.			

UCS-66 Material Toughness Requirements Stay		
Stress ratio per UCS-66(b)(1)(b) = $\frac{22.26}{79.37}$ =	0.2804	
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C	
Material is exempt from impact testing at the Design MDMT of -28.89°C.		

Vessel Parameters		
$\boxed{ \text{Aspect Ratio} = \frac{L_v}{h} }$		
$\boxed{ \text{Aspect Ratio} = \frac{L_v}{H} }$		
$I_1=rac{t_1^3}{12}$		
$I_2 = rac{t_2^3}{12}$		
$\alpha = \frac{H}{h}$		
$K = \left(rac{I_2}{I_1} ight) lpha$		
New / Corrode	ed	
Aspect Ratio = $\frac{3,276.6}{203.2}$ =	16.125	
$Aspect Ratio = \frac{3,276.6}{190.5} =$	17.2	
$I_1 = \frac{15.88}{12} =$	333.3957 mm ³	
$I_2 = \frac{25.4}{12}^3 =$	1,365.5887 mm ³	
$\alpha = \frac{190.5}{203.2} =$	0.9375	
$K = \left(\frac{1,365.5887}{333.3957}\right) \cdot 0.9375 =$	3.84	

Tubesheet
$e_m=e_b=rac{p-d}{p}$
$S_{ml} = P rac{H}{2t_2 E_m}$
$\left(S_{b} ight)_{Mi}=Ph^{2}rac{c_{i}}{12I_{2}E_{b}}\left[rac{1+K\left(3-lpha^{2} ight)}{1+2K} ight]$
$\left(\left(S_{b} ight)_{Mo} = Ph^{2} rac{c_{o}}{12I_{2}E_{b}} \left[rac{1+K\left(3-lpha^{2} ight)}{1+2K} ight]$
$\left(\left(S_{bl} ight)_{Q_{i}} = Ph^{2} rac{c_{i}}{12I_{2}E_{b}} rac{1 + 2lpha^{2}K}{1 + 2K} ight)$

$\left(\left(S_{bl} ight)_{Qo} = P h^2 rac{c_o}{12 I_2 E_b} rac{1 + 2 lpha^2 K}{1 + 2 K} ight.$			
$\overline{\left(S_{T} ight)_{Mi}=S_{ml}+\left(S_{b} ight)_{Mi}}$			
$\overline{\left(S_{T} ight)_{Mo}=S_{ml}+\left(S_{b} ight)_{Mo}}$			
$\overline{\left(S_{Tl} ight)_{Q_i}=S_{ml}+\left(S_{tl} ight)_{Q_i}}$			
$\overline{\left(S_{Tl} ight)_{Qo}=S_{ml}+\left(S_{bl} ight)_{Qo}}$			
Ligament Efficiency			
$e_m = e_b = \frac{76.2 - 25.65}{76.2} =$	0.6634		
Plate Parameters	ı		
New / Corroded			
$c_i = rac{25.4 - 0 - 0}{2} =$	12.7 mm		
$c_o = -rac{25.4 - 0 - 0}{2} =$	-12.7 mm		
Operating Hot & Corroded	<u> </u>		
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)	
$S_{ml} = 6.89 \cdot 1.02 \cdot \frac{190.5}{2 \cdot 25.4 \cdot 0.6634} =$	39.743	1,315.434	
$ \overline{ \left(S_b \right)_{Mi} = 6.89 \cdot 1.02 \cdot 203.2^{\; 2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6634} \cdot \left[\frac{1 + 3.84 \cdot \left(3 - 0.9375^{\; 2} \right)}{1 + 2 \cdot 3.84} \right] = $	<u>357.311</u>	1,973.151	
$ \left[\left(S_b \right)_{Mo} = 6.89 \cdot 1.02 \cdot 203.2 ^2 \cdot - \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6634} \cdot \left[\frac{1 + 3.84 \cdot \left(3 - 0.9375 ^2 \right)}{1 + 2 \cdot 3.84} \right] = 0.00 \cdot 1.00 \cdot 1.$	<u>-357.311</u>	1,973.151	
$(S_{il})_{Qi} = 6.89 \cdot 1.02 \cdot 203.2^{\ 2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9375^{\ 2} \cdot 3.84}{1 + 2 \cdot 3.84} =$	200.877	1,973.151	
$\left(S_{ll} ight)_{Qo} = 6.89 \cdot 1.02 \cdot 203.2 ^2 \cdot - rac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot rac{1 + 2 \cdot 0.9375 ^2 \cdot 3.84}{1 + 2 \cdot 3.84} = ight.$	-200.877	1,973.151	
$(S_T)_{Mi} = 39.743 + 357.311 =$	<u>397.054</u>	1,973.151	
$(S_T)_{Mo} = 39.743 + -357.311 =$	<u>-317.568</u>	1,973.151	
$(S_{Tl})_{Q_i} = 39.743 + 200.877 =$	240.62	1,973.151	
$\left(S_{Tl} ight)_{Qo} = 39.743 + -200.877 =$	<u>-161.134</u>	1,973.151	
Shop Test New			
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)	
$S_{ml} = 30.17 \cdot 1.02 \cdot \frac{190.5}{2 \cdot 25.4 \cdot 0.6634} =$	173.926	2,404.491	
$(S_b)_{Mi} = 30.17 \cdot 1.02 \cdot 203.2^{\ 2} \cdot rac{12.7}{12 \cdot 1,365.5887 \cdot 0.6634} \cdot \left[rac{1 + 3.84 \cdot \left(3 - 0.9375^{\ 2} ight)}{1 + 2 \cdot 3.84} ight] =$	1,563.679	3,606.736	
$\left[\left(S_{b}\right)_{Mo}=30.17\cdot1.02\cdot203.2^{\;2}\cdot-\frac{12.7}{12\cdot1,365.5887\cdot0.6634}\cdot\left[\frac{1+3.84\cdot\left(3-0.9375^{\;2}\right)}{1+2\cdot3.84}\right]=$	<u>-1,563.679</u>	3,606.736	

$(S_{bl})_{Qi} = 30.17 \cdot 1.02 \cdot 203.2^{\ 2} \cdot rac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot rac{1 + 2 \cdot 0.9375^{\ 2} \cdot 3.84}{1 + 2 \cdot 3.84} =$	879.087	3,606.736
$\left(\left(S_{ll} \right)_{Qo} = 30.17 \cdot 1.02 \cdot 203.2^{-2} \cdot - rac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot rac{1 + 2 \cdot 0.9375^{-2} \cdot 3.84}{1 + 2 \cdot 3.84} = ight.$	<u>-879.087</u>	3,606.736
$(S_T)_{Mi} = 173.926 + 1{,}563.679 =$	<u>1,737.605</u>	3,606.736
$\left(S_{T} ight)_{Mo}=173.926+{}-1{,}563.679=$	-1,389.753	3,606.736
$(S_{Tl})_{Qi} = 173.926 + 879.087 =$	1,053.013	3,606.736
$(S_{Tl})_{Qo} = 173.926 + -879.087 =$	<u>-705.161</u>	3,606.736

Plugsheet		
$oxed{e_m = e_b = rac{p-d}{p}}$		
$oxed{S_{ml} = P rac{H}{2t_2 E_m}}$		
$\left[\left(S_{b} ight)_{Mi} = Ph^{2}rac{c_{i}}{12I_{2}E_{b}}\left[rac{1+K\left(3-lpha^{2} ight)}{1+2K} ight]$		
$\left[\left(S_{b} ight)_{Mo}=Ph^{2}rac{c_{o}}{12I_{2}E_{b}}\left[rac{1+K\left(3-lpha^{2} ight)}{1+2K} ight]$		
$\left(\left(S_{bl} ight)_{Qi} ight. = Ph^2 rac{c_i}{12 I_2 E_b} rac{1 + 2 lpha^2 K}{1 + 2 K} ight.$		
$\left(\left(S_{bl} ight)_{Qo} = P h^2 rac{c_o}{12 I_2 E_b} rac{1 + 2 lpha^2 K}{1 + 2 K} ight.$		
$\left[\left(S_{T} ight)_{Mi}=S_{ml}+\left(S_{b} ight)_{Mi}$		
$\left[\left(S_{T} ight)_{Mo}=S_{ml}+\left(S_{b} ight)_{Mo}$		
$oxed{\left(S_{Tl} ight)_{Q_i} = S_{ml} + \left(S_{ll} ight)_{Q_i}}$		
$(S_{Tl})_{Qo} = S_{ml} + (S_{ll})_{Qo}$		
Ligament Efficiency		
$e_m = e_b = rac{76.2 - 26.3}{76.2} =$	0.6549	
Plate Parameters	,	
New / Corroded		
$c_i = rac{25.4 - 0 - 0}{2} =$	12.7 mm	
$c_o = -rac{25.4 - 0 - 0}{2} =$ -12.7 mm		
Operating Hot & Corroded		
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$S_{ml} = 6.89 \cdot 1.02 \cdot \frac{190.5}{2 \cdot 25.4 \cdot 0.6549} =$	<u>40.261</u>	1,315.434

$\left \left(S_{b}\right)_{Mi}=6.89\cdot1.02\cdot203.2^{\;2}\cdot\frac{12.7}{12\cdot1,365.5887\cdot0.6549}\cdot\left[\frac{1+3.84\cdot\left(3-0.9375^{\;2}\right)}{1+2\cdot3.84}\right]=$	<u>361.965</u>	1,973.151
$\left[\left(S_{b}\right)_{Mo}=6.89\cdot1.02\cdot203.2^{2}\cdot-\frac{12.7}{12\cdot1,365.5887\cdot0.6549}\cdot\left[\frac{1+3.84\cdot\left(3-0.9375^{2}\right)}{1+2\cdot3.84}\right]=0.89\cdot1.02\cdot203.2^{2}\cdot-\frac{12.7}{12\cdot1,365.5887\cdot0.6549}\cdot\left[\frac{1+3.84\cdot\left(3-0.9375^{2}\right)}{1+2\cdot3.84}\right]=0.89\cdot1.02\cdot203.2^{2}\cdot-\frac{12.7}{12\cdot1,365.5887\cdot0.6549}\cdot\left[\frac{1+3.84\cdot\left(3-0.9375^{2}\right)}{1+2\cdot3.84}\right]=0.89\cdot1.02\cdot203.2^{2}\cdot-\frac{12.7}{12\cdot1,365.5887\cdot0.6549}\cdot\left[\frac{1+3.84\cdot\left(3-0.9375^{2}\right)}{1+2\cdot3.84}\right]=0.89\cdot1.02\cdot203.2^{2}\cdot-\frac{12.7}{12\cdot1,365.5887\cdot0.6549}\cdot\left[\frac{1+3.84\cdot\left(3-0.9375^{2}\right)}{1+2\cdot3.84}\right]=0.89\cdot1.02\cdot203.2^{2}\cdot-\frac{12.7}{12\cdot1,365.5887\cdot0.6549}\cdot\left[\frac{1+3.84\cdot\left(3-0.9375^{2}\right)}{1+2\cdot3.84}\right]=0.89\cdot1.02\cdot203.2^{2}\cdot-\frac{12.7}{12\cdot1,365.5887\cdot0.6549}\cdot\left[\frac{1+3.84\cdot\left(3-0.9375^{2}\right)}{1+2\cdot3.84}\right]=0.89\cdot1.02\cdot203.2^{2}\cdot-\frac{12.7}{12\cdot1,365.5887\cdot0.6549}\cdot\left[\frac{1+3.84\cdot\left(3-0.9375^{2}\right)}{1+2\cdot3.84}\right]=0.89\cdot1.02\cdot203.2^{2}\cdot-\frac{12.7}{12\cdot1,365.5887\cdot0.6549}\cdot\left[\frac{1+3.84\cdot\left(3-0.9375^{2}\right)}{1+2\cdot3.84}\right]=0.89\cdot1.02\cdot203.2^{2}\cdot-\frac{12.7}{12\cdot1,365.5887\cdot0.6549}\cdot\left[\frac{1+3.84\cdot\left(3-0.9375^{2}\right)}{1+2\cdot3.84}\right]=0.89\cdot1.02\cdot203.2^{2}\cdot-\frac{12.7}{12\cdot1,365.5887\cdot0.6549}\cdot\left[\frac{1+3.84\cdot\left(3-0.9375^{2}\right)}{1+2\cdot3.84}\right]=0.89\cdot1.02\cdot203.2^{2}\cdot-\frac{12.7}{12\cdot1,365\cdot1.02}\cdot\left[\frac{1+3.84\cdot\left(3-0.9375^{2}\right)}{1+2\cdot3.84}\right]$	<u>-361.965</u>	1,973.151
$\left(S_{il} ight)_{Q_i} = 6.89 \cdot 1.02 \cdot 203.2^{\ 2} \cdot rac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot rac{1 + 2 \cdot 0.9375^{\ 2} \cdot 3.84}{1 + 2 \cdot 3.84} = $	200.877	1,973.151
$\left(\left(S_{ll} \right)_{Qo} \right) = 6.89 \cdot 1.02 \cdot 203.2^{-2} \cdot - \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9375^{-2} \cdot 3.84}{1 + 2 \cdot 3.84} = $	-200.877	1,973.151
$(S_T)_{Mi} = 40.261 + 361.965 =$	402.226	1,973.151
$(S_T)_{Mo} = 40.261 + -361.965 =$	-321.704	1,973.151
$(S_{Tl})_{Q_i} = 40.261 + 200.877 =$	241.138	1,973.151
$(S_{Tl})_{Qo} = 40.261 + -200.877 =$	<u>-160.616</u>	1,973.151
Shop Test New		
	Stress	Allow
	(kg _f /cm ²)	(kg _f /cm ²)
$S_{ml} = 30.17 \cdot 1.02 \cdot \frac{190.5}{2 \cdot 25.4 \cdot 0.6549} =$		
$S_{ml} = 30.17 \cdot 1.02 \cdot \frac{190.5}{2 \cdot 25.4 \cdot 0.6549} = $ $(S_b)_{Mi} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^{2})}{1 + 2 \cdot 3.84} \right] =$	(kg _f /cm ²)	(kg _f /cm ²)
	(kg _f /cm ²) 176.192 1.584.047	(kg _f /cm ²) 2,404.491 3,606.736
$\left(S_b ight)_{Mi} = 30.17 \cdot 1.02 \cdot 203.2 \ ^2 \cdot rac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[rac{1 + 3.84 \cdot \left(3 - 0.9375 \ ^2 ight)}{1 + 2 \cdot 3.84} ight] =$	(kg _f /cm ²) 176.192 1.584.047	(kg _f /cm ²) 2,404.491 3,606.736
$(S_b)_{Mi} = 30.17 \cdot 1.02 \cdot 203.2^{\ 2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^{\ 2})}{1 + 2 \cdot 3.84} \right] = $ $(S_b)_{Mo} = 30.17 \cdot 1.02 \cdot 203.2^{\ 2} \cdot - \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^{\ 2})}{1 + 2 \cdot 3.84} \right] = $	(kg _f /cm ²) 176.192 1.584.047 -1.584.047	(kg _f /cm ²) 2,404.491 3,606.736 3,606.736
$(S_b)_{Mi} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^{2})}{1 + 2 \cdot 3.84} \right] =$ $(S_b)_{Mo} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^{2})}{1 + 2 \cdot 3.84} \right] =$ $(S_{il})_{Qi} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9375^{2} \cdot 3.84}{1 + 2 \cdot 3.84} =$	(kg _f /cm ²) 176.192 1.584.047 -1.584.047 879.087	(kg _f /cm ²) 2,404.491 3,606.736 3,606.736
$ (S_b)_{Mi} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^{2})}{1 + 2 \cdot 3.84} \right] = $ $ (S_b)_{Mo} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^{2})}{1 + 2 \cdot 3.84} \right] = $ $ (S_{bl})_{Qi} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9375^{2} \cdot 3.84}{1 + 2 \cdot 3.84} = $ $ (S_{bl})_{Qo} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9375^{2} \cdot 3.84}{1 + 2 \cdot 3.84} = $	(kg _f /cm ²) 176.192 1.584.047 -1.584.047 879.087	(kg _f /cm ²) 2,404.491 3,606.736 3,606.736 3,606.736
$ (S_b)_{Mi} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^{2})}{1 + 2 \cdot 3.84} \right] = $ $ (S_b)_{Mo} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.84 \cdot (3 - 0.9375^{2})}{1 + 2 \cdot 3.84} \right] = $ $ (S_{ll})_{Q_l} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9375^{2} \cdot 3.84}{1 + 2 \cdot 3.84} = $ $ (S_{ll})_{Q_0} = 30.17 \cdot 1.02 \cdot 203.2^{2} \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9375^{2} \cdot 3.84}{1 + 2 \cdot 3.84} = $ $ (S_{ll})_{Mi} = 176.192 + 1,584.047 = $	(kg _f /cm ²) 176.192 1.584.047 -1.584.047 879.087 -879.087 1,760.239	(kg _f /cm ²) 2,404.491 3,606.736 3,606.736 3,606.736 3,606.736

$$S_{ms} = P \frac{h}{4t_1 E_m} \left\{ 4 - \left[\frac{2 + K \left(5 - \alpha^2 \right)}{1 + 2K} \right] \right\}$$

$$(S_b)_{Ni} = P \frac{c_i}{24I_1 E_b} \left[-3H^2 + 2h^2 \frac{1 + 2\alpha^2 K}{1 + 2K} \right]$$

$$(S_b)_{No} = P \frac{c_o}{24I_1 E_b} \left[-3H^2 + 2h^2 \frac{1 + 2\alpha^2 K}{1 + 2K} \right]$$

$$(S_{bs})_{Qi} = P h^2 \frac{c_i}{12I_1 E_b} \frac{1 + 2\alpha^2 K}{1 + 2K}$$

$\left (S_{bs})_{Qo} ight.=Ph^2rac{c_o}{12I_1E_b}rac{1+2lpha^2K}{1+2K}$		
$oxed{(S_T)_{Ni}\ = S_{ms} + (S_b)_{Ni}}$		
$(S_T)_{No} = S_{ms} + (S_b)_{No}$		
$(S_{Ts})_{Qi} = S_{ms} + (S_{bs})_{Qi}$		
$(S_{Ts})_{Qo} = S_{ms} + (S_{bs})_{Qo}$		
Plate Parameters		
New / Corroded		
$c_i = rac{15.88 - 0 - 0}{2} =$	7.94 mm	
$c_o = -rac{15.88 - 0 - 0}{2} =$	-7.94 mm	
Operating Hot & Corroded		
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$oxed{S_{ms} = 6.89 \cdot 1.02 \cdot rac{203.2}{4 \cdot 15.88 \cdot 1} \cdot \left\{4 - \left[rac{2 + 3.84 \cdot \left(5 - 0.9375^{-2} ight)}{1 + 2 \cdot 3.84} ight] ight\}} = 0.89 \cdot 1.02 \cdot rac{203.2}{4 \cdot 15.88 \cdot 1} \cdot \left\{4 - \left[rac{2 + 3.84 \cdot \left(5 - 0.9375^{-2} ight)}{1 + 2 \cdot 3.84} ight] ight\}$	<u>43.791</u>	1,315.434
$\boxed{(S_b)_{Ni} = 6.89 \cdot 1.02 \cdot \frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 190.5^{-2} + 2 \cdot 203.2^{-2} \cdot \frac{1 + 2 \cdot 0.9375^{-2} \cdot 3.84}{1 + 2 \cdot 3.84} \right] = }$	<u>-245.07</u>	1,973.151
$\left[\left(S_{b}\right)_{No}=6.89\cdot1.02\cdot-\frac{7.94}{24\cdot333.3957\cdot1}\cdot\left[3\cdot190.5\overset{2}{}+2\cdot203.2\overset{2}{}\cdot\frac{1+2\cdot0.9375\overset{2}{}\cdot3.84}{1+2\cdot3.84}\right]=$	245.07	1,973.151
$(S_{bs})_{Qi} = 6.89 \cdot 1.02 \cdot 203.2 \cdot 2 \cdot \frac{7.94}{12 \cdot 333.3957 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9375 \cdot 2 \cdot 3.84}{1 + 2 \cdot 3.84} =$	<u>514.245</u>	1,973.151
$\left[(S_{bs})_{Qo} = 6.89 \cdot 1.02 \cdot 203.2^{ 2} \cdot - rac{7.94}{12 \cdot 333.3957 \cdot 1} \cdot rac{1 + 2 \cdot 0.9375^{ 2} \cdot 3.84}{1 + 2 \cdot 3.84} ight] =$	<u>-514.245</u>	1,973.151
$(S_T)_{Ni} = 43.791 + -245.07 =$	<u>-201.279</u>	1,973.151
$(S_T)_{No} = 43.791 + 245.07 =$	<u>288.861</u>	1,973.151
$(S_{Ts})_{Qi} = 43.791 + 514.245 =$	<u>558.036</u>	1,973.151
$oxed{(S_{Ts})_{Qo}=43.791+-514.245=}$	<u>-470.454</u>	1,973.151
Shop Test New		
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$\left S_{ms} = 30.17 \cdot 1.02 \cdot \frac{203.2}{4 \cdot 15.88 \cdot 1} \cdot \left\{4 - \left[\frac{2 + 3.84 \cdot \left(5 - 0.9375^{\ 2}\right)}{1 + 2 \cdot 3.84}\right]\right\} = \frac{1}{1 \cdot 100} \cdot \left[\frac{1}{1 \cdot 100} \cdot \frac{1}{100} \cdot$	191.641	2,404.491
$\left(S_b\right)_{Ni} = 30.17 \cdot 1.02 \cdot \frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 190.5^{\ 2} + 2 \cdot 203.2^{\ 2} \cdot \frac{1 + 2 \cdot 0.9375^{\ 2} \cdot 3.84}{1 + 2 \cdot 3.84} \right] =$	-1,072.486	3,606.736
$\left(S_b\right)_{No} = 30.17 \cdot 1.02 \cdot -\frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 190.5^{-2} + 2 \cdot 203.2^{-2} \cdot \frac{1 + 2 \cdot 0.9375^{-2} \cdot 3.84}{1 + 2 \cdot 3.84} \right] = 0.0000000000000000000000000000000000$	1,072.486	3,606.736
$(S_{bs})_{Qi} = 30.17 \cdot 1.02 \cdot 203.2^{\ 2} \cdot \frac{7.94}{12 \cdot 333.3957 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9375^{\ 2} \cdot 3.84}{1 + 2 \cdot 3.84} =$	2,250.462	3,606.736

$\left (S_{bs})_{Qo} ight. = 30.17 \cdot 1.02 \cdot 203.2^{\; 2} \cdot - rac{7.94}{12 \cdot 333.3957 \cdot 1} \cdot rac{1 + 2 \cdot 0.9375^{\; 2} \cdot 3.84}{1 + 2 \cdot 3.84} ight. =$	-2,250.462	3,606.736
$(S_T)_{Ni} = 191.641 + -1,072.486 =$	<u>-880.845</u>	3,606.736
$(S_T)_{No} = 191.641 + 1,072.486 =$	1,264.127	3,606.736
$(S_{Ts})_{Qi} = 191.641 + 2,250.462 =$	2,442.103	3,606.736
$(S_{Ts})_{Qo} = 191.641 + -2,250.462 =$	-2,058.821	3,606.736

Stay		
$oxed{S_{mst} = P rac{h}{2t_3 E_{st}} \left[rac{2 + K \left(5 - lpha^2 ight)}{1 + 2K} ight]}$		
Operating Hot & Corroded		
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$oxed{S_{mst} = 6.89 \cdot 1.02 \cdot rac{203.2}{2 \cdot 12 \cdot 1} \cdot \left[rac{2 + 3.84 \cdot \left(5 - 0.9375^{-2} ight)}{1 + 2 \cdot 3.84} ight]} = 0.0000000000000000000000000000000000$	122.242	1,315.434
Shop Test New	,	,
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$\left[S_{mst} = 30.17 \cdot 1.02 \cdot \frac{203.2}{2 \cdot 12 \cdot 1} \cdot \left[\frac{2 + 3.84 \cdot \left(5 - 0.9375^{\ 2}\right)}{1 + 2 \cdot 3.84} \right] = 0.00333333333333333333333333333333333$	<u>534.961</u>	2,404.491

Tubes

ASME Section VIII Division 1, 2021 Edition Metric				
Com	ponent	Tube		
Material		SA-179 Smls Tube (II-D Metric p. 8, ln. 11)		p. 8, In. 11)
Impact Tested	Normalized	Fine Grain Practice	РШНТ	
No	No	No	No)
		Design Pressure (bar)	Design Design Temperature (°C) MDMT (°C)	
Int	ernal	6.89	343.33	-28.89
Ext	ernal	1.03	343.33	-20.09
		Dimensio	าร	
Outer	Diameter		25.4 mm	
Length			2,590.8 mm	
Tube Nomii	nal Thickness		3.18 mm	
Tube Minimu	um Thickness ¹		2.78 mm	
Corrosion	Inner		0 mm	
Outer		0 mm		
Weight and Capacity				
		Wei	ght (kg)	Capacity (liters)
N	New		4.5 0.74	
Cor	Corroded 4.5 0.74		0.74	

¹Tube minimum thickness = nominal thickness times tube tolerance factor of 0.875.

Results Summary						
Governing condition	External pressure					
Minimum thickness per UG-16	Exempt per UG-16(b)(2)					
Design thickness due to internal pressure (t)	<u>0.1 mm</u>					
Design thickness due to external pressure (t _e)	<u>0.22 mm</u>					
Maximum allowable working pressure (MAWP)	212.4 bar					
Maximum allowable pressure (MAP)	<u>221.51 bar</u>					
Maximum allowable external pressure (MAEP)	<u>114.25 bar</u>					
Rated MDMT	-105 °C					

UCS-66 Material Toughness Requirements	
Impact test exempt per UCS-66(d) (NPS 4 or smaller pipe) =	-105°C
Material is exempt from impact testing at the Design MDMT of -2	28.89°C.

Design thickness, (at 343.33 °C) Appendix 1-1

$$t = \frac{P \cdot R_o}{S \cdot E + 0.40 \cdot P} + \text{Corrosion} = \frac{6.89 \cdot 12.7}{886 \cdot 1.00 + 0.40 \cdot 6.89} + 0 = \underline{0.1} \text{ mm}$$

Maximum allowable working pressure, (at 343.33 °C) Appendix 1-1

$$P = \frac{S \cdot E \cdot t}{R_o - 0.40 \cdot t} - P_s = \frac{886 \cdot 1.00 \cdot (3.18 \cdot 0.875)}{12.7 - 0.40 \cdot (3.18 \cdot 0.875)} - 0 = \underline{212.4} \text{ bar}$$

Maximum allowable pressure, (at 21.11 °C) Appendix 1-1

$$P = \frac{S \cdot E \cdot t}{R_o - 0.40 \cdot t} = \frac{924 \cdot 1.00 \cdot (3.18 \cdot 0.875)}{12.7 - 0.40 \cdot (3.18 \cdot 0.875)} = \underline{\textbf{221.51}} \; \text{bar}$$

External Pressure, (Corroded & at 343.33 °C) UG-28(c)

$$\frac{L}{D_0} = \frac{2,590.8}{25.4} = 50.0000$$

$$\frac{D_o}{t} = \frac{25.4}{0.22} = 117.3116$$

From table G: A = 0.000083

From table CS-1 Metric: $B = 92.7809 \text{ kg/cm}^2 (90.99 \text{ bar})$

$$P_a = \frac{4 \cdot B}{3 \cdot (D_a/t)} = \frac{4 \cdot 90.99}{3 \cdot (25.4/0.22)} = 1.03$$
 bar

Design thickness for external pressure $P_a = 1.03$ bar

$$t_a = t + \text{Corrosion} = 0.22 + 0 = \underline{0.22} \text{ mm}$$

Maximum Allowable External Pressure, (Corroded & at 343.33 °C) UG-28(c)

$$\frac{L}{D_0} = \frac{2,590.8}{25.4} = 50.0000$$

$$\frac{D_o}{t} = \frac{25.4}{3.18 \cdot 0.875} = 9.1429$$

From table G: A = 0.013800

From table CS-1 Metric: $B = 757.9092 \text{ kg/cm}^2 (743.2537 \text{ bar})$

$$S_y = 2 \cdot B_{sy} = 2 \cdot 806.4497 = 1,612.9 \, \text{ kg/cm}^2$$

$$S_1 = 2 \cdot S_e = 2 \cdot 903.5 = 1,806.9 \text{ kg/cm}^2$$

$$S_2 = 0.90 \cdot S_y = 0.90 \cdot 1,612.9 = 1,451.6$$
 kg/cm²

$$S = \min(S_1, S_2) = \min(1,806.9,1,451.6) = 1,451.6 \text{ kg/cm}^2$$

$$P_{a1} = \left[\frac{2.167}{D_o/t} - 0.08333\right] \cdot B = \left[\frac{2.167}{9.1429} - 0.08333\right] \cdot 757.9 = 114.25 \ \ \, \text{bar}$$

$$P_{a2} = \left(\frac{2 \cdot S}{D_o/t}\right) \cdot \left[1 - \frac{1}{D_o/t}\right] = \left(2 \cdot \frac{1,451.6}{9.1429}\right) \cdot \left[1 - \frac{1}{9.1429}\right] = 277.34 \text{ bar}$$

Maximum Allowable External Pressure = $min(P_{a1}, P_{a2}) = \frac{114.25}{1}$ bar

End Plates for Inlet/Outlet Header

1	ASME Section VIII Division 1, 2021 Edition Metric							
Component		Арр	endix 13 End Plate					
Ма	terial	SA-516 70 (II-D Metric p. 20, ln. 45)						
Impact Tested	Normalized	Fine Grain Practice	PWHT					
No	No	No	Yes					
		Design Pressure (bar)	Design Desigr) Temperature (°C) MDMT (
Int	ernal	6.89	343.33	-28.89				
Ext	ternal	1.03	343.33	-20.09				
		Static Liquid I	Head					
Cor	dition	P _s (bar)	H _s (mm)	SG				
Test h	orizontal	0.04	431.8	1				
		Dimension	s					
Short Insid	de Length (d)		190.5 mm					
Long Insid	le Length (D)		203.2 mm					
Nominal	Thickness	12 mm						
Corrosion	Inner	0 mm						
5011031011	Outer	0 mm						
Joint E	Efficiency	1						

Results Summary						
Governing condition	internal pressure					
Minimum thickness per UG-16	1.5 mm + 0 mm = 1.5 mm					
Design thickness due to internal pressure (t)	<u>6.68</u> mm					
Design thickness due to external pressure (t _e)	2.59 mm					
Maximum allowable working pressure (MAWP)	<u>22.26</u> bar					
Maximum allowable pressure (MAP)	23.81 bar					
Maximum allowable external pressure (MAEP)	<u>22.26</u> bar					
Rated MDMT	-44.01°C					

UCS-66 Material Toughness Requirements	
Governing thickness, t _g =	12 mm
Exemption temperature from Fig UCS-66M Curve B =	-23.31°C
Stress ratio per UCS-66(b)(1)(b) = $\frac{22.26}{23.81}$ =	0.9348
Reduction in MDMT, T _R from Fig UCS-66.1M =	3.7°C
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C
$MDMT = \max [MDMT - T_R - T_{PWHT}, -48] = \max [-23.31 - 3.7 - 17, -48] =$	-44.01°C
Material is exempt from impact testing at the Design MDMT of -28.89°C.	

Factor C from Appendix 13-4(f)

Factor C = 0.2

Factor Z

$$Z = \min \left[3.4 - \frac{2.4 \cdot d}{D}, 2.5 \right] = \min \left[3.4 - \frac{2.4 \cdot d}{203.2}, 2.5 \right] = 1.15$$

Design thickness, (at 343.33 °C) UG-34(c)(3)

$$t = d \cdot \sqrt{\frac{Z \cdot C \cdot P \cdot 1.02}{S \cdot E}} + \text{Corrosion} = 190.5 \cdot \sqrt{\frac{1.15 \cdot 0.2 \cdot 6.89 \cdot 1.02}{1,315.434 \cdot 1}} + 0 = \underline{6.68} \ \text{mm}$$

Maximum allowable working pressure, (at 343.33 °C)

$$MAWP = \left(\frac{S \cdot E}{C \cdot Z}\right) \cdot \left(\frac{t}{d}\right)^2 - P_s = \left(\frac{\frac{1,315.434}{1.02} \cdot 1}{0.2 \cdot 1.15}\right) \cdot \left(\frac{12}{190.5}\right)^2 - 0 = \underline{22.26} \ \ \, \text{bar}$$

Maximum allowable pressure, (At 21.11 °C)

$$Z \ = \ \min \left[3.4 - \frac{2.4 \cdot d}{D}, 2.5 \right] \ = \ \min \left[3.4 - \frac{2.4 \cdot d}{203.2}, 2.5 \right] = 1.15$$

$$MAP = \left(\frac{S \cdot E}{C \cdot Z}\right) \cdot \left(\frac{t}{d}\right)^2 = \left(\frac{\frac{1,407.208}{1.02} \cdot 1}{0.2 \cdot 1.15}\right) \cdot \left(\frac{12}{190.5}\right)^2 = \underline{23.81} \text{ bar}$$

Design thickness for external pressure, (at 343.33 °C) UG-34(c)(3)

$$t = d \cdot \sqrt{\frac{Z \cdot C \cdot P_e \cdot 1.02}{S \cdot E}} + \text{Corrosion} = 190.5 \cdot \sqrt{\frac{1.15 \cdot 0.2 \cdot 1.03 \cdot 1.02}{1,315.434 \cdot 1}} + 0 = \underline{\textbf{2.59}} \quad \text{mm}$$

Maximum allowable external pressure, (At 343.33 °C)

$$\text{MAEP} = \left(\frac{S \cdot E}{C \cdot Z}\right) \cdot \left(\frac{t}{d}\right)^2 = \left(\frac{\frac{1,315.434}{1.02} \cdot 1}{0.2 \cdot 1.15}\right) \cdot \left(\frac{12}{190.5}\right)^2 = \underline{22.26} \ \text{bar}$$

Return Header

ASME Section VIII Division 1, 2021 Edition Metric							
Co	omponent	· ·	endix 13 Plug Heade	r			
		Design Design Design Pressure (bar) Temperature (°C) MDMT (°					
I	nternal	6.89 343.33					
E	xternal	1.03	343.33	-28.89			
	Dim	ensions					
Tubesheet	Inside Length, h		342.9 mm				
Tubesneet	Thickness, t ₂		25.4 mm				
T /D	Inside Length, H		152.4 mm				
Top/Bottom	Thickness, t ₁		15.88 mm				
End Plat	te Thickness, t ₅		12 mm				
Le	Length, L _v		3,276.6 mm				
Corrosion	Inner	0 mm					
Corrosion	Outer	0 mm					
		ubes					
Numb	er of Passes		2				
	Pitch		76.2 mm				
Layout Angle		Rot	ated Triangular (60°)				
	Quantity		225				
	OD		25.4 mm				
	Wall Thickness		3.18 mm				
	all Thickness		2.78 mm				
Distance E	Between Headers		2,540 mm				
Corrosion	Inner	0 mm					
	Outer 0 mm						
Mirro	Sta ber of Stays	y Plate					
	ckness, t ₃	·					
		12 mm					
Maximum Compartment Dimension 165.1 mm							
Stay to End Plate Weld Full Penetration							

Joint Efficiency				
Tubesheet/Plugsheet mid-plate	1			
Top/Bottom mid-plate	1			
Corner	1			
End	1			
Stay	1			

Ligament Efficiency					
Diameter,					
Tubesheet	25.65 mm				
Plugsheet	26.3 mm				

Material Summary									
Plate	Material	Fine Grain Practice	PWHT						
Tubesheet/Plugsheet	SA-516 70	×	X	X	V				
Top/Bottom	SA-516 70	×	×	×	/				
End	SA-516 70	×	×	×	/				
Stay	SA-516 70	×	×	×	V				
Tubes	SA-179 Smls Tube	×	×	×	X				

Results Summary										
t t _d MAWP MAP MDMT (bar) (°C)										
Tubesheet	25.4	8.84	50.33	53.84	-48					
Plugsheet	25.4	8.9	49.68	53.15	-48					
Top/Bottom	15.88	6.58	37.18	39.77	-48					
Stay	12	0.91	90.8	97.13	-105					

Stress Summary												
		S _m (kg _f / cm ²)	S _{m,allow} (kg _f / cm ²)	(k) _{N,M} g _f / n ²)	(k	ь)Q g _f / n ²)	(k) _{N,M} g _f / n ²)	(k	τ)Q g _f / n ²)	S _{T,allow} (kg _f / cm ²)
		Cili ,	Cili)	Inner	Outer	Inner	Outer	Inner	Outer	Inner	Outer	Cili)
Tubesheet	Oper Hot & Corr	<u>32</u>	1,315	<u>239</u>	<u>-239</u>	<u>129</u>	<u>-129</u>	<u>270</u>	<u>-207</u>	<u>161</u>	<u>-97</u>	1,973
Tubesneet	Shop Test New	<u>139</u>	2,404	<u>1,044</u>	<u>-1,044</u>	<u>565</u>	<u>-565</u>	<u>1,183</u>	<u>-905</u>	<u>704</u>	<u>-426</u>	3,607
Plugsheet	Oper Hot & Corr	<u>32</u>	1,315	<u>242</u>	<u>-242</u>	<u>129</u>	<u>-129</u>	<u>274</u>	<u>-209</u>	<u>161</u>	<u>-97</u>	1,973
Flugslieet	Shop Test New	<u>141</u>	2,404	<u>1,057</u>	<u>-1,057</u>	<u>565</u>	<u>-565</u>	<u>1,198</u>	<u>-916</u>	<u>706</u>	<u>-424</u>	3,607
Top/Bottom	Oper Hot & Corr	<u>35</u>	1,315	<u>-155</u>	<u>155</u>	<u>331</u>	<u>-331</u>	<u>-120</u>	<u>191</u>	<u>366</u>	<u>-295</u>	1,973
Topibollom	Shop Test New	<u>155</u>	2,404	<u>-680</u>	<u>680</u>	<u>1,447</u>	<u>-1,447</u>	<u>-525</u>	<u>835</u>	<u>1,601</u>	<u>-1,292</u>	3,607
Store Op	Oper Hot & Corr	<u>100</u>	1,315	-	-	-	-		<u>10</u>	<u>)0</u>		1,315
Stay Shop Test No		<u>437</u>	2,404	-	-	-	-		<u>43</u>	37		2,404

UCS-66 Material Toughness Requirements Tubesheet					
Governing thickness, t _g =	15.88 mm				
Exemption temperature from Fig UCS-66M Curve B =	-15.05°C				
Stress ratio per UCS-66(b)(1)(b) = $\frac{22.26}{53.84}$ =	0.4134				
Reduction in MDMT, T _R from Fig UCS-66.1M =	47.4°C				
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C				
$MDMT = \max [MDMT - T_R - T_{PWHT}, -48] = \max [-15.05 - 47.4 - 17, -48] =$	-48°C				
Material is exempt from impact testing at the Design MDMT of -28.89°C.					

UCS-66 Material Toughness Requirements Plugsheet		
Governing thickness, t _g =	15.88 mm	
Exemption temperature from Fig UCS-66M Curve B =	-15.05°C	
Stress ratio per UCS-66(b)(1)(b) = $\frac{22.26}{53.15}$ =	0.4187	
Reduction in MDMT, T _R from Fig UCS-66.1M =	45.9°C	
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C	
$MDMT = \max [MDMT - T_R - T_{PWHT}, -48] = \max [-15.05 - 45.9 - 17, -48] = 0$	-48°C	
Material is exempt from impact testing at the Design MDMT of -28.89°C.		

UCS-66 Material Toughness Requirements Top/Bottom		
Governing thickness, t _g =	15.88 mm	
Exemption temperature from Fig UCS-66M Curve B =	-15.05°C	
Stress ratio per UCS-66(b)(1)(b) = $\frac{22.26}{39.77}$ =	0.5596	
Reduction in MDMT, T _R from Fig UCS-66.1M =	26.2°C	
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C	
$MDMT = \max [MDMT - T_R - T_{PWHT}, -48] = \max [-15.05 - 26.2 - 17, -48] = 0$	-48°C	
Material is exempt from impact testing at the Design MDMT of -28.89°C.		

UCS-66 Material Toughness Requirements Stay		
$\boxed{ \text{Stress ratio per UCS-66}(b)(1)(b) = \frac{22.26}{97.13} = }$	0.2291	
Stress ratio ≤ 0.35, MDMT per UCS-66(b)(3) =	-105°C	
Material is exempt from impact testing at the Design MDMT of -28.89°C.		

Vessel Parameters	
ed	
19.8462	
21.5	
333.3957 mm ³	
1,365.5887 mm ³	
0.9231	
3.7809	

Tubesheet	
$e_m = e_b = rac{p-d}{p}$	
$S_{ml} = Prac{H}{2t_2E_m}$	
$\left(\left(S_{b} ight)_{Mi} = Ph^{2}rac{c_{i}}{12I_{2}E_{b}}\left[rac{1+K\left(3-lpha^{2} ight)}{1+2K} ight]$	
$\left(\left(S_{b} ight)_{Mo} = Ph^{2} rac{c_{o}}{12I_{2}E_{b}} \left[rac{1+K\left(3-lpha^{2} ight)}{1+2K} ight]$	
$\left(S_{ll} ight)_{Qi} = Ph^2rac{c_i}{12I_2E_b}rac{1+2lpha^2K}{1+2K}$	

$\left \left(S_{ll} ight)_{Qo} ight. = P h^2 rac{c_o}{12 I_2 E_b} rac{1 + 2 lpha^2 K}{1 + 2 K} ight.$		
$\overline{\left(S_T ight)_{Mi} = S_{ml} + \left(S_b ight)_{Mi}}$		
$(S_T)_{Mo} = S_{ml} + (S_b)_{Mo}$		
$\overline{\left(S_{Tl} ight)_{Q_{ar{l}}} = S_{ml} + \left(S_{bl} ight)_{Q_{ar{l}}}}$		
$\overline{\left(S_{Tl} ight)_{Qo} = S_{ml} + \left(S_{bl} ight)_{Qo}}$		
Ligament Efficiency		
$e_m = e_b = rac{76.2 - 25.65}{76.2} =$	0.6634	
Plate Parameters	1	
New / Corroded		
$c_i = rac{25.4 - 0 - 0}{2} =$	12.7 mm	
$c_o = -rac{25.4 - 0 - 0}{2} =$	-12.7 mm	
Operating Hot & Corroded	1	
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$S_{ml} = 6.89 \cdot 1.02 \cdot \frac{152.4}{2 \cdot 25.4 \cdot 0.6634} =$	<u>31.795</u>	1,315.434
$\boxed{\left(S_b\right)_{Mi} = 6.89 \cdot 1.02 \cdot 165.1^{\ 2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6634} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231^{\ 2}\right)}{1 + 2 \cdot 3.7809}\right] = }$	238.513	1,973.151
$ \overline{ \left(S_b \right)_{Mo} = 6.89 \cdot 1.02 \cdot 165.1^{ \ 2} \cdot - \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6634} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231^{ \ 2} \right)}{1 + 2 \cdot 3.7809} \right] = 0.00 \cdot 1.00 \cdot 165.1^{ \ 2} \cdot - \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6634} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231^{ \ 2} \right)}{1 + 2 \cdot 3.7809} \right] = 0.00 \cdot 1.00 \cdot 165.1^{ \ 2} \cdot - \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6634} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231^{ \ 2} \right)}{1 + 2 \cdot 3.7809} \right] = 0.00 \cdot 1.00 $	<u>-238.513</u>	1,973.151
$\left[\left(S_{ll}\right)_{Qi}\right. = 6.89 \cdot 1.02 \cdot 165.1^{-2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231^{-2} \cdot 3.7809}{1 + 2 \cdot 3.7809} =$	129.119	1,973.151
$\left[\left(S_{\mathcal{U}}\right)_{Qo}\right. = 6.89 \cdot 1.02 \cdot 165.1^{-2} \cdot \\ - \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231^{-2} \cdot 3.7809}{1 + 2 \cdot 3.7809} =$	<u>-129.119</u>	1,973.151
$\left(S_{T} ight)_{Mi} = 31.795 + 238.513 =$	270.307	1,973.151
$\left({S_T} ight)_{Mo} = 31.795 + -238.513 =$	<u>-206.718</u>	1,973.151
$\left[(S_{Tl})_{Q_i} = 31.795 + 129.119 = ight.$	<u>160.913</u>	1,973.151
$\left(S_{Tl} ight)_{Q_0} = 31.795 + -129.119 =$	<u>-97.324</u>	1,973.151
Shop Test New		
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$S_{ml} = 30.17 \cdot 1.02 \cdot \frac{152.4}{2 \cdot 25.4 \cdot 0.6634} =$	139.141	2,404.491
$\boxed{\left(S_{b}\right)_{Mi} = 30.17 \cdot 1.02 \cdot 165.1^{\ 2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6634} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231^{\ 2}\right)}{1 + 2 \cdot 3.7809}\right] = }$	1,043.789	3,606.736
$\boxed{\left(S_{b}\right)_{Mo} = 30.17 \cdot 1.02 \cdot 165.1^{-2} \cdot \\ -\frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6634} \cdot \\ \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231^{-2}\right)}{1 + 2 \cdot 3.7809}\right] = 0.0000000000000000000000000000000000$	-1,043.789	3,606.736

$\boxed{(S_{\mathcal{U}})_{Qi} = 30.17 \cdot 1.02 \cdot 165.1^{\ 2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231^{\ 2} \cdot 3.7809}{1 + 2 \cdot 3.7809}} =$	<u>565.055</u>	3,606.736
$\left[\left(S_{\mathcal{U}}\right)_{Q_{\mathcal{O}}} = 30.17 \cdot 1.02 \cdot 165.1^{-2} \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231^{-2} \cdot 3.7809}{1 + 2 \cdot 3.7809} = \right]$	<u>-565.055</u>	3,606.736
$(S_T)_{Mi} = 139.141 + 1,043.789 =$	1,182.93	3,606.736
$(S_T)_{Mo} = 139.141 + -1,043.789 =$	<u>-904.648</u>	3,606.736
$(S_{Tl})_{Qi} = 139.141 + 565.055 =$	704.196	3,606.736
$(S_{Tl})_{Q_0} = 139.141 + -565.055 =$	-425.914	3,606.736

Plugsheet		
$e_m = e_b = rac{p-d}{p}$		
$S_{ml} = Prac{H}{2t_2E_m}$		
$\left(\left(S_{b} ight)_{Mi} = Ph^{2} rac{c_{i}}{12I_{2}E_{b}} \left[rac{1 + K\left(3 - lpha^{2} ight)}{1 + 2K} ight]$		
$\left(S_{b} ight)_{Mo}=Ph^{2}rac{c_{o}}{12I_{2}E_{b}}\Biggl[rac{1+K\left(3-lpha^{2} ight)}{1+2K}\Biggr]$		
$(S_{bl})_{Q_{ar{i}}} = Ph^2 rac{c_{ar{i}}}{12I_2E_b} rac{1 + 2lpha^2K}{1 + 2K}$		
$(S_{bl})_{Qo} = Ph^2 rac{c_o}{12I_2E_b} rac{1 + 2lpha^2K}{1 + 2K}$		
$\left(S_T ight)_{Mi} = S_{ml} + \left(S_b ight)_{Mi}$		
$\left(\left(S_{T} ight) _{Mo}=S_{ml}+\left(S_{b} ight) _{Mo}$		
$\left(\left(S_{Tl} ight)_{Q_{ar{l}}} = S_{ml} + \left(S_{ar{l}l} ight)_{Q_{ar{l}}}$		
$(S_{Tl})_{Qo} = S_{ml} + (S_{ll})_{Qo}$		
Ligament Efficiency		
$e_m = e_b = rac{76.2 - 26.3}{76.2} \; = \;$	0.6549	
Plate Parameters	•	
New / Corroded		
$c_i = rac{25.4 - 0 - 0}{2} =$	12.7 mm	
$c_o = - rac{25.4 {-}0 - 0}{2} =$	-12.7 mm	
Operating Hot & Corroded		
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$S_{ml} = 6.89 \cdot 1.02 \cdot \frac{152.4}{2 \cdot 25.4 \cdot 0.6549} =$	32.209	1,315.434

$\left \left(S_{b}\right)_{Mi}=6.89\cdot1.02\cdot165.1^{2}\cdot\frac{12.7}{12\cdot1,365.5887\cdot0.6549}\cdot\left[\frac{1+3.7809\cdot\left(3-0.9231^{2}\right)}{1+2\cdot3.7809}\right]=$	<u>241.619</u>	1,973.151
$\left[\left(S_b \right)_{Mo} = 6.89 \cdot 1.02 \cdot 165.1^{\ 2} \cdot - \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231^{\ 2} \right)}{1 + 2 \cdot 3.7809} \right] = 0.001 \cdot 1001 \cdot 1001$	<u>-241.619</u>	1,973.151
$\left(S_{ll}\right)_{Q_{l}} = 6.89 \cdot 1.02 \cdot 165.1^{-2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231^{-2} \cdot 3.7809}{1 + 2 \cdot 3.7809} =$	129.119	1,973.151
$\left[(S_{ll})_{Qo} = 6.89 \cdot 1.02 \cdot 165.1^{-2} \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231^{-2} \cdot 3.7809}{1 + 2 \cdot 3.7809} \right] =$	<u>-129.119</u>	1,973.151
$\left((S_T)_{Mi} = 32.209 + 241.619 = ight)$	<u>273.828</u>	1,973.151
$(S_T)_{Mo} = 32.209 + -241.619 =$	<u>-209.411</u>	1,973.151
$(S_{Tl})_{Qi} = 32.209 + 129.119 =$	<u>161.327</u>	1,973.151
$(S_{Tl})_{Q_0} = 32.209 + -129.119 =$	<u>-96.91</u>	1,973.151
Shop Test New		
	Stress	Allow
	(kg _f /cm ²)	(kg _f /cm ²)
$S_{ml} = 30.17 \cdot 1.02 \cdot \frac{152.4}{2 \cdot 25.4 \cdot 0.6549} =$	(kg _f /cm ²) 140.953	(kg _f /cm ²) 2,404.491
$S_{ml} = 30.17 \cdot 1.02 \cdot \frac{152.4}{2 \cdot 25.4 \cdot 0.6549} = $ $(S_b)_{Mi} = 30.17 \cdot 1.02 \cdot 165.1^{2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot (3 - 0.9231^{2})}{1 + 2 \cdot 3.7809} \right] =$	140.953	
	1,057.385	2,404.491 3,606.736
$\left(S_b ight)_{Mi} = 30.17 \cdot 1.02 \cdot 165.1^{\;2} \cdot rac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[rac{1 + 3.7809 \cdot \left(3 - 0.9231^{\;2} ight)}{1 + 2 \cdot 3.7809} ight] =$	1,057.385	2,404.491 3,606.736
$ \left[\left(S_b \right)_{Mi} = 30.17 \cdot 1.02 \cdot 165.1^{\ 2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231^{\ 2} \right)}{1 + 2 \cdot 3.7809} \right] = \left[\left(S_b \right)_{Mo} = 30.17 \cdot 1.02 \cdot 165.1^{\ 2} \cdot - \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231^{\ 2} \right)}{1 + 2 \cdot 3.7809} \right] = \left[\left(S_b \right)_{Mo} = 30.17 \cdot 1.02 \cdot 165.1^{\ 2} \cdot - \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231^{\ 2} \right)}{1 + 2 \cdot 3.7809} \right] = \left[\left(S_b \right)_{Mo} = \left(S_b \right)_{Mo} + \left(S_b \right)_{$	1.057.385 -1.057.385	2,404.491 3,606.736 3,606.736
$ \left[(S_b)_{Mi} = 30.17 \cdot 1.02 \cdot 165.1^{\ 2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot (3 - 0.9231^{\ 2})}{1 + 2 \cdot 3.7809} \right] = $ $ \left[(S_b)_{Mo} = 30.17 \cdot 1.02 \cdot 165.1^{\ 2} \cdot - \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot (3 - 0.9231^{\ 2})}{1 + 2 \cdot 3.7809} \right] = $ $ \left[(S_{bl})_{Qi} = 30.17 \cdot 1.02 \cdot 165.1^{\ 2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231^{\ 2} \cdot 3.7809}{1 + 2 \cdot 3.7809} \right] = $	140.953 1.057.385 -1.057.385 565.055	2,404.491 3,606.736 3,606.736
$ \left(S_b\right)_{Mi} = 30.17 \cdot 1.02 \cdot 165.1^{2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231^{2}\right)}{1 + 2 \cdot 3.7809}\right] = $ $ \left(S_b\right)_{Mo} = 30.17 \cdot 1.02 \cdot 165.1^{2} \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231^{2}\right)}{1 + 2 \cdot 3.7809}\right] = $ $ \left(S_{ll}\right)_{Qi} = 30.17 \cdot 1.02 \cdot 165.1^{2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231^{2} \cdot 3.7809}{1 + 2 \cdot 3.7809} = $ $ \left(S_{ll}\right)_{Qo} = 30.17 \cdot 1.02 \cdot 165.1^{2} \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231^{2} \cdot 3.7809}{1 + 2 \cdot 3.7809} = $	140.953 1.057.385 -1.057.385 565.055 -565.055	2,404.491 3,606.736 3,606.736 3,606.736
$ \left(S_b\right)_{Mi} = 30.17 \cdot 1.02 \cdot 165.1^{2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231^{2}\right)}{1 + 2 \cdot 3.7809}\right] = \\ \left(S_b\right)_{Mo} = 30.17 \cdot 1.02 \cdot 165.1^{2} \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 0.6549} \cdot \left[\frac{1 + 3.7809 \cdot \left(3 - 0.9231^{2}\right)}{1 + 2 \cdot 3.7809}\right] = \\ \left(S_{bl}\right)_{Qi} = 30.17 \cdot 1.02 \cdot 165.1^{2} \cdot \frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231^{2} \cdot 3.7809}{1 + 2 \cdot 3.7809} = \\ \left(S_{bl}\right)_{Qo} = 30.17 \cdot 1.02 \cdot 165.1^{2} \cdot -\frac{12.7}{12 \cdot 1,365.5887 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231^{2} \cdot 3.7809}{1 + 2 \cdot 3.7809} = \\ \left(S_{T}\right)_{Mi} = 140.953 + 1,057.385 = $	140.953 1.057.385 -1.057.385 565.055 -565.055 1,198.339	2,404.491 3,606.736 3,606.736 3,606.736 3,606.736

$$S_{ms} = P \frac{h}{4t_1 E_m} \left\{ 4 - \left[\frac{2 + K \left(5 - \alpha^2 \right)}{1 + 2K} \right] \right\}$$

$$(S_b)_{Ni} = P \frac{c_i}{24I_1 E_b} \left[-3H^2 + 2h^2 \frac{1 + 2\alpha^2 K}{1 + 2K} \right]$$

$$(S_b)_{No} = P \frac{c_o}{24I_1 E_b} \left[-3H^2 + 2h^2 \frac{1 + 2\alpha^2 K}{1 + 2K} \right]$$

$$(S_{bs})_{Qi} = Ph^2 \frac{c_i}{12I_1 E_b} \frac{1 + 2\alpha^2 K}{1 + 2K}$$

$\left (S_{bs})_{Qo} ight. = Ph^2 rac{c_o}{12I_1E_b} rac{1+2lpha^2 K}{1+2K} ight.$		
$(S_T)_{Ni} = S_{ms} + (S_b)_{Ni}$		
$(S_T)_{No} = S_{ms} + (S_b)_{No}$		
$(S_{Ts})_{Qi} = S_{ms} + (S_{bs})_{Qi}$		
$(S_{Ts})_{Qo} = S_{ms} + (S_{bs})_{Qo}$		
Plate Parameters		
New / Corroded		
$c_i = rac{15.88 - 0 - 0}{2} =$	7.94 mm	
$c_o = -rac{15.88 - 0 - 0}{2} =$	-7.94 mm	
Operating Hot & Corroded	1	
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$\left S_{ms} = 6.89 \cdot 1.02 \cdot \frac{165.1}{4 \cdot 15.88 \cdot 1} \cdot \left\{4 - \left[\frac{2 + 3.7809 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 + 2 \cdot 3.7809}\right]\right\} = \frac{165.1}{1 \cdot 100} \cdot \left[\frac{1000 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 \cdot 1000 \cdot 1000}\right]\right\} = \frac{1000 \cdot 1000 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 \cdot 1000 \cdot 1000} = \frac{1000 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 \cdot 1000 \cdot 1000} = \frac{1000 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 \cdot 1000 \cdot 1000} = \frac{1000 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 \cdot 1000} = \frac{10000 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 \cdot 1000} = \frac{10000 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 \cdot 1000} = \frac{10000 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 \cdot 1000} = \frac{10000 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 \cdot 1000} = \frac{10000 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 \cdot 1000} = \frac{10000 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 \cdot 1000} = \frac{100000 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 \cdot 1000} = 1000000000000000000000000000000000000$	<u>35.365</u>	1,315.434
$ \left[(S_b)_{Ni} = 6.89 \cdot 1.02 \cdot \frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 152.4^{\ 2} + 2 \cdot 165.1^{\ 2} \cdot \frac{1 + 2 \cdot 0.9231^{\ 2} \cdot 3.7809}{1 + 2 \cdot 3.7809} \right] = $	<u>-155.418</u>	1,973.151
$ \left[(S_b)_{No} = 6.89 \cdot 1.02 \cdot -\frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 152.4 \cdot ^2 + 2 \cdot 165.1 \cdot ^2 \cdot \frac{1 + 2 \cdot 0.9231 \cdot ^2 \cdot 3.7809}{1 + 2 \cdot 3.7809} \right] = 0.00 \cdot 1.02 \cdot -\frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 152.4 \cdot ^2 + 2 \cdot 165.1 \cdot ^2 \cdot \frac{1 + 2 \cdot 0.9231 \cdot ^2 \cdot 3.7809}{1 + 2 \cdot 3.7809} \right] = 0.00 \cdot 1.02 \cdot -\frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 152.4 \cdot ^2 + 2 \cdot 165.1 \cdot ^2 \cdot \frac{1 + 2 \cdot 0.9231 \cdot ^2 \cdot 3.7809}{1 + 2 \cdot 3.7809} \right] = 0.00 \cdot 1.02 \cdot -\frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 152.4 \cdot ^2 + 2 \cdot 165.1 \cdot ^2 \cdot \frac{1 + 2 \cdot 0.9231 \cdot ^2 \cdot 3.7809}{1 + 2 \cdot 3.7809} \right] = 0.00 \cdot 1.02 \cdot -\frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \frac{1 \cdot 3.7809}{1 \cdot 3.7809} = 0.00 \cdot 1.02 \cdot \frac{1 \cdot 3.7809}{1 \cdot 3.7809} = 0.00 \cdot \frac{1 \cdot 3.7809}{1 \cdot 3.7809} = 0.00 \cdot \frac{1 \cdot 3.7809}{1 \cdot 3.7809} = 0$	<u>155.418</u>	1,973.151
$(S_{bs})_{Qi} = 6.89 \cdot 1.02 \cdot 165.1^{\ 2} \cdot rac{7.94}{12 \cdot 333.3957 \cdot 1} \cdot rac{1 + 2 \cdot 0.9231^{\ 2} \cdot 3.7809}{1 + 2 \cdot 3.7809} =$	330.544	1,973.151
$\left[(S_{bs})_{Qo} = 6.89 \cdot 1.02 \cdot 165.1^{-2} \cdot - rac{7.94}{12 \cdot 333.3957 \cdot 1} \cdot rac{1 + 2 \cdot 0.9231^{-2} \cdot 3.7809}{1 + 2 \cdot 3.7809} ight] =$	<u>-330.544</u>	1,973.151
$(S_T)_{Ni} = 35.365 + -155.418 =$	<u>-120.052</u>	1,973.151
$(S_T)_{No} = 35.365 + 155.418 =$	<u>190.783</u>	1,973.151
$oxed{(S_{Ts})_{Qi}} = 35.365 + 330.544 =$	<u>365.909</u>	1,973.151
$oxed{(S_{Ts})_{Qo}} = 35.365 + -330.544 =$	<u>-295.178</u>	1,973.151
Shop Test New		·
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$\left S_{ms} = 30.17 \cdot 1.02 \cdot \frac{165.1}{4 \cdot 15.88 \cdot 1} \cdot \left\{4 - \left[\frac{2 + 3.7809 \cdot \left(5 - 0.9231^{-2}\right)}{1 + 2 \cdot 3.7809}\right]\right\} = \frac{165.1}{1 \cdot 100} \cdot \left[\frac{1}{100} \cdot \left(\frac{1}{100}\right) \cdot \left($	<u>154.768</u>	2,404.491
$(S_b)_{Ni} = 30.17 \cdot 1.02 \cdot \frac{7.94}{24 \cdot 333.3957 \cdot 1} \cdot \left[-3 \cdot 152.4^{\ 2} + 2 \cdot 165.1^{\ 2} \cdot \frac{1 + 2 \cdot 0.9231^{\ 2} \cdot 3.7809}{1 + 2 \cdot 3.7809} \right] =$	<u>-680.147</u>	3,606.736
$\left[\left(S_{b}\right)_{No}=30.17\cdot1.02\cdot-\frac{7.94}{24\cdot333.3957\cdot1}\cdot\left[-3\cdot152.4^{2}+2\cdot165.1^{2}\cdot\frac{1+2\cdot0.9231^{2}\cdot3.7809}{1+2\cdot3.7809}\right]=$	680.147	3,606.736
$(S_{bs})_{Qi} = 30.17 \cdot 1.02 \cdot 165.1^{\ 2} \cdot \frac{7.94}{12 \cdot 333.3957 \cdot 1} \cdot \frac{1 + 2 \cdot 0.9231^{\ 2} \cdot 3.7809}{1 + 2 \cdot 3.7809} =$	<u>1,446.54</u>	3,606.736

$\left (S_{bs})_{Qo} ight. = 30.17 \cdot 1.02 \cdot 165.1^{-2} \cdot - rac{7.94}{12 \cdot 333.3957 \cdot 1} \cdot rac{1 + 2 \cdot 0.9231^{-2} \cdot 3.7809}{1 + 2 \cdot 3.7809} ight. =$	<u>-1,446.54</u>	3,606.736
$(S_T)_{Ni} = 154.768 + -680.147 =$	<u>-525.379</u>	3,606.736
$(S_T)_{No} = 154.768 + 680.147 =$	<u>834.915</u>	3,606.736
$(S_{Ts})_{Qi} = 154.768 + 1,446.54 =$	<u>1,601.308</u>	3,606.736
$(S_{Ts})_{Qo} = 154.768 + -1,446.54 =$	-1,291.772	3,606.736

Stay		
$oxed{S_{mst} = P rac{h}{2t_3 E_{st}} \left[rac{2 + K \left(5 - lpha^2 ight)}{1 + 2K} ight]}$		
Operating Hot & Corroded		
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$\left[S_{mst} \ = 6.89 \cdot 1.02 \cdot \frac{165.1}{2 \cdot 12 \cdot 1} \cdot \left[\frac{2 + 3.7809 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 + 2 \cdot 3.7809} \right] = 0.89 \cdot 1.02 \cdot \frac{165.1}{2 \cdot 12 \cdot 1} \cdot \left[\frac{2 + 3.7809 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 + 2 \cdot 3.7809} \right] = 0.89 \cdot 1.02 \cdot \frac{165.1}{2 \cdot 12 \cdot 1} \cdot \left[\frac{2 + 3.7809 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 + 2 \cdot 3.7809} \right] = 0.89 \cdot 1.02 \cdot \frac{165.1}{2 \cdot 12 \cdot 1} \cdot \left[\frac{2 + 3.7809 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 + 2 \cdot 3.7809} \right] = 0.89 \cdot 1.02 \cdot \frac{165.1}{2 \cdot 12 \cdot 1} \cdot \left[\frac{2 + 3.7809 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 + 2 \cdot 3.7809} \right] = 0.89 \cdot 1.02 \cdot \frac{165.1}{2 \cdot 12 \cdot 1} \cdot \left[\frac{2 + 3.7809 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 + 2 \cdot 3.7809} \right] = 0.89 \cdot 1.02 \cdot \frac{165.1}{2 \cdot 12 \cdot 1} \cdot \left[\frac{2 + 3.7809 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 + 2 \cdot 3.7809} \right] = 0.89 \cdot 1.02 \cdot \frac{165.1}{2 \cdot 12 \cdot 1} \cdot \left[\frac{2 + 3.7809 \cdot \left(5 - 0.9231^{\ 2}\right)}{1 + 2 \cdot 3.7809} \right] = 0.89 \cdot 1.02 \cdot \frac{165.1}{2 \cdot 12 \cdot 1} \cdot \frac{165.1}{1 \cdot 12 \cdot 12 \cdot 12} \cdot \frac{165.1}{1 \cdot 12 \cdot 12 \cdot 12} \cdot \frac{165.1}{1 \cdot 12 \cdot 12 \cdot 12} \cdot \frac{165.1}{1 \cdot 12$	99.89	1,315.434
Shop Test New		
	Stress (kg _f /cm ²)	Allow (kg _f /cm ²)
$\left[S_{mst} = 30.17 \cdot 1.02 \cdot \frac{165.1}{2 \cdot 12 \cdot 1} \cdot \left[\frac{2 + 3.7809 \cdot \left(5 - 0.9231^{-2}\right)}{1 + 2 \cdot 3.7809} \right] = 0.0000000000000000000000000000000000$	437.144	2,404.491

End Plates for Return Header

ASME Section VIII Division 1, 2021 Edition Metric						
Component		Appendix 13 End Plate				
Material		SA-516 70 (II-D Metric p. 20, ln. 45)				
Impact Tested	Normalized	Fine Grain Practice	PWHT			
No	No	No	Yes			
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)		
Internal		6.89	343.33	-28.89		
External		1.03	343.33			
Static Liquid Head						
Condition		P _s (bar)	H _s (mm)	SG		
Test horizontal		0.03	342.9	1		
Dimensions						
Short Inside Length (d)		152.4 mm				
Long Inside Length (D)		165.1 mm				
Nominal Thickness		12 mm				
Corrosion	Inner	0 mm				
	Outer	0 mm				
Joint Efficiency		1				

Results Summary				
Governing condition	internal pressure			
Minimum thickness per UG-16	1.5 mm + 0 mm = 1.5 mm			
Design thickness due to internal pressure (t)	<u>5.42</u> mm			
Design thickness due to external pressure (t _e)	<u>2.1</u> mm			
Maximum allowable working pressure (MAWP)	33.76 bar			
Maximum allowable pressure (MAP)	<u>36.11</u> bar			
Maximum allowable external pressure (MAEP)	33.76 bar			
Rated MDMT	-48°C			

UCS-66 Material Toughness Requirements			
Governing thickness, t _g =			
Exemption temperature from Fig UCS-66M Curve B =	-23.31°C		
Stress ratio per UCS-66(b)(1)(b) = $\frac{22.26}{36.11}$ =	0.6163		
Reduction in MDMT, T _R from Fig UCS-66.1M =			
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C		
$MDMT = \max [MDMT - T_R - T_{PWHT}, -48] = \max [-23.31 - 21.5 - 17, -48] =$	-48°C		
Material is exempt from impact testing at the Design MDMT of -28.89°C.			

Factor C from Appendix 13-4(f)

Factor C = 0.2

Factor Z

$$Z = \min \left[3.4 - \frac{2.4 \cdot d}{D}, 2.5 \right] = \min \left[3.4 - \frac{2.4 \cdot d}{165.1}, 2.5 \right] = 1.1846$$

Design thickness, (at 343.33 °C) UG-34(c)(3)

$$t = d \cdot \sqrt{\frac{Z \cdot C \cdot P \cdot 1.02}{S \cdot E}} + \text{Corrosion} = 152.4 \cdot \sqrt{\frac{1.1846 \cdot 0.2 \cdot 6.89 \cdot 1.02}{1,315.434 \cdot 1}} + 0 = \underline{5.42} \text{ mm}$$

Maximum allowable working pressure, (at 343.33 °C)

$$MAWP = \left(\frac{S \cdot E}{C \cdot Z}\right) \cdot \left(\frac{t}{d}\right)^2 - P_s = \left(\frac{\frac{1,315.434}{1.02} \cdot 1}{0.2 \cdot 1.1846}\right) \cdot \left(\frac{12}{152.4}\right)^2 - 0 = \underline{33.76} \ \ \, \text{bar}$$

Maximum allowable pressure, (At 21.11 °C)

$$Z \ = \ \min \left[3.4 - \frac{2.4 \cdot d}{D}, 2.5 \right] \ = \ \min \left[3.4 - \frac{2.4 \cdot d}{165.1}, 2.5 \right] = 1.1846$$

$$MAP = \left(\frac{S \cdot E}{C \cdot Z}\right) \cdot \left(\frac{t}{d}\right)^2 = \left(\frac{\frac{1,407.208}{1.02} \cdot 1}{0.2 \cdot 1.1846}\right) \cdot \left(\frac{12}{152.4}\right)^2 = \underline{36.11} \ \, \text{bar}$$

Design thickness for external pressure, (at 343.33 °C) UG-34(c)(3)

$$t = d \cdot \sqrt{\frac{Z \cdot C \cdot P_e \cdot 1.02}{S \cdot E}} + \text{Corrosion} = 152.4 \cdot \sqrt{\frac{1.1846 \cdot 0.2 \cdot 1.03 \cdot 1.02}{1,315.434 \cdot 1}} + 0 = \underline{2.1} \quad \text{mm}$$

Maximum allowable external pressure, (At 343.33 °C)

$$\text{MAEP} = \left(\frac{S \cdot E}{C \cdot Z}\right) \cdot \left(\frac{t}{d}\right)^2 = \left(\frac{\frac{1,315.434}{1.02} \cdot 1}{0.2 \cdot 1.1846}\right) \cdot \left(\frac{12}{152.4}\right)^2 = \underline{33.76} \text{ bar}$$